ISBN 9781842174517

http://repository.nms.ac.uk/856

Deposited on: 10 August 2016
Mound 27

The northern of the three mounds to the southeast of mound 16 provided the most significant archaeological remains. By complete chance, the initial 1m square (Trench U) exposed several large flat stones that were obviously part of the wall of a structure. We expanded the square to a trench 2m x 3m, with the southwest 1m square unexplored. This revealed an arc of walling (Figure 11.10), consisting of eight large flat slabs, enclosing an area to the northeast. It is difficult to estimate the diameter of the inner face in such a small exposure but it is clearly a substantial enclosure, about 10m in diameter. One stone was found, apparently in situ, projecting into the interior and this suggests we are dealing with a wheelhouse. The wall was surrounded by a fairly homogeneous brown sand (202, 204, 206) that was covered by a windblown sand layer (203) and immediately behind the wall was a small patch of charcoal-rich sand (205). A distinctive decorated rim sherd (Figure 11.13.55) from the brown sand filling the interior of this structure (206) suggests a Middle Iron Age date around the first century BC/AD.

Mounds 26 and 25

The deposits in Trenches T and V were similar in character, containing pale brown deposits with little dramatic textural or colour changes to distinguish the layers. In Trench V on mound 25, the sequence begins with a pale brown sand (215; Figure 11.9). This was sealed by a mid brown sand (214) with possible ard marks and a lot of pottery. This layer produced a radiocarbon date of 790–400 cal BC (OxA-8922; 2485±40 BP) from a cattle vertebra. Over this was a light brown sand (213) which produced a radiocarbon date of 810–520 cal BC from a red deer astragalus (OxA-8924; 2540±45 BP). The final layer was golden-brown sand (212) with lots of shells.

In Trench T on mound 26, we reached a white sand (227), which may be the underlying windblown sand, but only a few centimeters of it was exposed (Figure 11.9). On top of this were two thin layers of reddish clayey sand (226), containing charcoal and other cultural material, which appears to be a floor layer. A radiocarbon result (SUERC-2695; 2430±35 BP) from a barley grain from this layer calibrates to 760–400 cal BC. There was then a thick layer of dark grey-brown sand (225) that produced lots of animal bone. A radiocarbon date of 790–400 cal BC from a cattle tibia (OxA-8881; 2485±35 BP) was obtained from this layer. This was overlain by a compact brown sand (224), white sand with possible ard marks (223) and orange-brown sand (221). Lying on top of this were two discrete patches, one of brown sand (228) and a more distinctive black layer (222) exposed on the removal of the topsoil.

The ceramics from both these trenched were thick, crudely made and undecorated bucket-shaped vessels that are consistent with the Early Iron Age radiocarbon dates.

Mounds 22, 23, 24

Excavation of the three southern mounds in this group revealed a very similar sequence in each mound (Figure 11.9). All four trenches revealed, after the removal of topsoil (P/161, Q/170, R/197, S/181), a discontinuous layer of shells in a matrix of dark brown or sometimes red-brown sand (Q/172, R/192, S/183). Below this was sterile yellow sand (P/164, Q/171) which, in Trenches R and S, could be divided into several layers that probably represent different sand blows and intervening stabilization horizons (R/196, /195, /194, /193, S/186, /189, /185, /182, /187, /188). The only complications occurred in Trench P where the archaeological horizon could be split in two: a lower, dark brown, shell-rich horizon (166, 191) and an upper, red-brown layer (169) which were covered by a layer of blown sand (162) and by another layer of blown sand (167). This trenched was further complicated by ploughing, probably recently, that had inverted the stratigraphy (163, 165).

Two radiocarbon dates were obtained from the deposits in this area: SUERC-2694 (2350±35 BP) was obtained from a barley grain within a shell layer (172) in Trench Q and produced a calibrated date of 510–380 cal BC, and OxA-8923 (2410±40 BP) was obtained from a cattle vertebra in a dark brown occupation layer (166) in Trench P and dates to 760–390 cal BC.

The interpretation of this material is difficult. It would appear that we have a fairly large area of machair covered by a thin discontinuous layer of midden, dominated by marine shells. This midden was not rich in artefactual material and it is only the radiocarbon dates that suggest that this material is contemporary with the Early Iron Age settlement that lies immediately to the north.

The finds

Pottery

Alison Sheridan

The ceramic assemblage from all of the trenches and from the fieldwalking undertaken in 1998 amounted to around 470 sherds and around 220 fragments (i.e. pieces less than 10mm in their greatest dimension), weighing c.2.45kg. The sherds are generally small, with most not exceeding 40mm in their maximum dimension, and in no case was there more than 10–15% of any single vessel present (and usually much less than that). This made estimation of the total number of vessels difficult, and also made it hard to attribute some of the sherds to a specific period with any degree of confidence. Nevertheless, no pottery demonstrably earlier than Beaker was noted, and the chronological range extends from the Chalcolithic/Early Bronze Age to the Middle Iron Age (Table 11.1).

The Chalcolithic/Early Bronze Age pottery is associated with the coastal mounds (17, 18 and 176) while the Late Bronze Age/Early Iron Age and Middle Iron Age pottery is associated with the inland mounds (16 and 24–27). The four sherds from Trench R (on an inland, undated mound
<table>
<thead>
<tr>
<th>Mound</th>
<th>Trench</th>
<th>Context (lowest to highest)</th>
<th>Period attribution</th>
<th>Associated/relevant C14 dates</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>A</td>
<td>71, 19, 18, 16, 14, 13, 12, 11 (plus ‘mixed contexts’ and unstratified)</td>
<td>Chalcol/EB (Beaker)</td>
<td>Context 18: i) 3875±35 BP (OxA-8905, sheep bone); ii) 3655±45 BP (OxA-8925, carbonised barley grains)</td>
<td>See text for discussion of dates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context 71: 3710±45 BP (OxA-8920, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>38, 36, 35, 33, 34</td>
<td>EBA (Food Vessel)</td>
<td>3685±45 BP (OxA-8921, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>B</td>
<td>8</td>
<td>Chalco/EB (Beaker)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>D</td>
<td>52</td>
<td>EBA (Food Vessel)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>K</td>
<td>156, 152, 146, 145, 144</td>
<td>Chalco/EB (Beaker)</td>
<td>Context 158 (aceramic): 3715±45 BP (OxA-8928, carbonised barley grains)</td>
<td>Likely that OxA-8928 dates Beaker activity and OxA-8926, 8927 and 8989 date EBA activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141, 145, 144, 140</td>
<td>EBA (Food Vessel)</td>
<td>Context 144: 3400±40 BP (OxA-8926, carbonised barley grains)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context 146: 3520±50 BP (OxA-8927, carbonised barley grains)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context 159 (aceramic): 3565±70 BP (OxA-8989, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>80, 79, 77, 76</td>
<td>Chalco/EB (Beaker)</td>
<td>Context 79: 3665±45 BP (OxA-9006, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>N</td>
<td>94, 92, 91</td>
<td>Chalco/EB (Beaker)</td>
<td></td>
<td>LBA/EIA date for cattle bone from 97, but bone must be intrusive</td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td>57, 56, 29</td>
<td>EBA (Food Vessel)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>P</td>
<td>164, 191, 162</td>
<td>LBA/EIA</td>
<td>Context 166 (aceramic): 2410±40 BP (OxA-8923, cattle bone)</td>
<td>Dated context assumed to be contemporary with 191</td>
</tr>
<tr>
<td>26</td>
<td>T</td>
<td>226, 224, 221, 220</td>
<td>LBA/EIA</td>
<td>Context 226: 2430±35 BP (SUERC-2695, carbonised barley grain)</td>
<td>Context 225 overfits 226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context 225 (aceramic): 2485±35 BP (OxA-8881, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>V</td>
<td>215, 214, 213, 212</td>
<td>LBA/EIA</td>
<td>Context 213: 2540±45 BP (OxA-8924, red deer bone)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Context 214: 2485±40 BP (OxA-8922, cattle bone)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>U</td>
<td>206, 204, 202, 203, 201</td>
<td>MIA</td>
<td>None</td>
<td>206 = fill inside probable wheelhouse</td>
</tr>
<tr>
<td>16</td>
<td>X</td>
<td>242, 241, 240</td>
<td>MIA</td>
<td>Context 242: i) 1980±35 BP (SUERC-2700, carbonised barley grain); ii) 2040±35 BP (SUERC-2696, carbonised barley grain)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>Unstratified</td>
<td>Prob. MIA</td>
<td>None</td>
<td>Likely to be later prehistoric by analogy with other inland mounds</td>
</tr>
<tr>
<td>Subsidiary mound adjacent to 22</td>
<td>R</td>
<td>192</td>
<td>Indeterminate</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Field-walking 25.6.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11.1. Chronological attribution of Sligeanach pottery by location
Figure 11.11. The Beaker pottery from Trenches A, B, K, M and N
adjacent to mound 22) are wholly undiagnostic and will not be discussed further, other than to say that they are likely to be late prehistoric given the date of the other pottery from the inland mounds. Also excluded from discussion below are four undiagnostic sherds found during fieldwalking in 1998, and two ‘sherd’ from Trench J that turned out to be natural fragments of stone.

No attempt has been made to classify the pottery into fabric types since this approach, in the author’s opinion, is of limited usefulness in characterizing much prehistoric pottery, all the more so in the Western Isles where, as Ewan Campbell has noted (2002: 139), ‘the bedrock is very variable in its mineralogy over very short distances’, and both the glacial clay (derived from Lewisian gneiss) and stone selected for use as filler can reflect this variability. Variation in the size and density of lithic inclusions has been noted, however, and does to some extent help to differentiate the pottery from different periods. The quartz, biotite mica and feldspar noted in many sherds are characteristic of Lewisian gneiss and there is no reason to suspect that any of the pottery was not locally manufactured.

A complete listing of the pottery is available in archive form; its main features are described and discussed below, in chronological order.

Beaker pottery (Early Bronze Age and possibly Chalcolithic)

Beaker pottery was found in Trenches A in mound 18, B in mound 176 and K, M and N in mound 17 (Figure 11.11):

- In Trench A, 144 sherds and around 100 fragments from possibly around 35 pots were found, mostly stratified below a layer in which coarse domestic Food Vessel pottery occurred; several sherds were associated with the cultivation soil 18 and it could be that these derive from midden material that had been spread on the soil to enrich it.
- Trench B produced only a single, small, abraded sherd (from a ditch/gully fill, context 8).
- In Trench K, 12 sherds from up to seven pots were found; five of these are from contexts 152 and 156, while most of the rest were found as residual material in the fill of an Early Bronze Age pit, 143, which had been dug through 152. (One sherd was found in 146, below the level of this pit.)
- Trench M produced 11 small sherds and three fragments, from up to seven pots, from contexts 76, 77, 79 and 80.
- Sixteen sherds and seven fragments, from up to eight pots, were found in Trench N, although they all came from contexts (91, 92 and 94) fairly high in the trench and lying above layer 97 in which a cattle rib of Early Iron Age date was found. While the possibility of an Iron Age date for the Trench N pottery cannot wholly be excluded, since the decorative motifs (of criss-cross and horizontal incised lines) can be found in the Iron Age decorative repertoire (e.g. at Sollas: Campbell 1991: illus. 14), nevertheless a Beaker date is equally or more likely, especially since the sherds’ fabric and finish is comparable with that of the Beaker pottery from the other trenches.

Overall, the Beaker assemblage consists of small sherds from mostly thin-walled, fine-ware pots with carefully smoothed surfaces; the core is usually dark grey (indicating a fairly rapid firing) and the exterior surfaces vary from reddish-brown to black. Wall thickness ranges from 5.3mm to 12mm, with most sherds falling in the range 6.5mm–8mm. Filler tends to be sparse (mostly at a density of less than 5%) and to consist of small, angular and sub-angular stone fragments, the commonest of which are clear quartz and a shiny black mineral (probably biotite mica); golden mica platelets are also fairly common. The use of gog as a filler was not noted. The condition of the sherds varies from minimally abraded to heavily abraded.

The sherds are so small – with the largest (SF1005) being only c.35mm x 35mm – that reconstruction of overall vessel shape and size is impossible, although it is clear that one cord-decorated pot from Trench A (the aforementioned SF1005 in context 18; Figure 11.11.1) had an upright, gently pointed rim with a horizontal cordon below it on the exterior; this pot might well have been a low-carinated All-Over-Cord decorated Beaker (cf. Clarke 1970: fig. 23), with an estimated rim diameter of 160mm. In addition, a small fragment from a wall-base junction in Trench M (SF1044 in context 80; Figure 11.11.40) suggests a pot with a pedestalled base, although another wall-base sherd (from sample 9002, Trench A; Figure 11.11.23) lacks this feature. No sherds gave the impression of having come from particularly large Beakers, as are sometimes found in domestic assemblages (Gibson 1982) although, again, the sherds’ small size makes it hard to be certain. Around 25–30% of the sherds have blackish organic residue on their interior or (occasionally) exterior, and this probably indicates the pots’ use for cooking.

Decoration (Figure 11.11) is mostly by incision – usually shallow – and mostly features simple horizontal lines, although designs incorporating an incised or impressed fringe below such lines are represented (Trench M: Figure 11.11.36 and 37, from one pot; Trench K: Figure 11.11.32 and 31, from two pots), as are designs with vertical as well as horizontal lines (e.g. Trench A: Figure 11.11.11a and 13).

- Two sherds have criss-cross incised decoration (Trench N: Figure 11.11.41 and Trench A; the latter is very faint and has not been illustrated).
- A very thin sherd from Trench M (Figure 11.11.34; context 79) has a metopic design featuring a panel of herringbone decoration (probably impressed), framed by vertical and horizontal incised lines; another sherd (Trench A: Figure 11.11.5, unstratified), may have the same design. The herringbone motif, lying above horizontal incised lines, was also noted on four other sherds and had probably been impressed.
- Other types of impressed decoration are rare, and there
is no sign of the use of shell impressions (as had been noted from other Hebridean Beaker assemblages such as Northton, Harris and Allt Chrisal, Barra; Gibson 1982: 216; Gibson 1995: 114). The aforementioned pot, SF1005 from Trench A, is decorated with impressions of fine, twisted cord, under 1 mm wide, with three horizontal lines on the internal rim bevel and further horizontal lines below the neck cordon; some of the latter had been smudged slightly during the pot's final buffing to a very low sheen.

- The single abraded sherd from Trench B (Figure 11.11.29) has horizonta. linear decoration that is so indistinct that it is hard to be sure whether or not it was made using impressed twisted cord.

- Two sherds (Figure 11.11.3 and Figure 11.11.2 from Trench A) have linear comb-decorated decoration; in the case of Figure 11.11.2 the teeth are unusually long. One sherd from Trench K (Figure 11.11.30) appears to have pseudo-comb-impression made using dashed, incised lines.

- Finally, one sherd from Trench A (Figure 11.11.4) has possible pin-prick impressed decoration.

Excluding the presence of the probable All-Over-Cord (AOC) Beaker in Trench A, there does not seem to be any significant variation among the Beaker pottery found in the different trenches.

As for the dating of this pottery, and the question of the duration of Beaker activity, the radiocarbon evidence is slightly ambiguous. The date of 3875±35 BP (OxA-8905: 2470–2200 cal BC at 2σ, using OxCal 4.1) from context 18 in Trench A – the context that produced the probable AOC Beaker – is well in line for the dating of the AOC Beakers elsewhere, including the examples from Sorisdale, Coll, which is associated with an effectively identical date of 3879±32 BP (OxA-14722: 2470–2210 cal BC at 2σ; Sheridan 2007: 109). However, context 12 in Trench A also produced a later date of 3665±45 BP (OxA-8921: 2200–1910 cal BC at 2σ) from a cattle bone, and a stratigraphically lower context in the same trench, layer 71, produced a similar date of 3710±45 BP (OxA-8920: 2280–1960 cal BC at 2σ, from a cattle metapodial). Furthermore, a date within the bracket c.2200–1910 BC was obtained from a Beaker-bearing context in Trench M, mound 17, and another similar date was obtained from the aceramic context 158 in Trench K. (An Iron Age date of 2385±40 BP for a cattle bone from a layer below the Beaker layers in Trench N can only be explained by the bone being intrusive.)

It is therefore unclear whether we are dealing with two phases of Beaker activity, or whether all the Beaker pottery actually belongs to the c.2200–1900 BC bracket; such a date is not impossible for AOC Beakers, whose currency is known to extend as late as this (e.g. at Eweford, East Lothian; Sheridan 2007: fig.11.8; cf Needham 2005). Comparative dating for other Beaker assemblages from the Hebrides is unsatisfactory. The Northton assemblage – with which the Sligeachan assemblage is most closely comparable – is dated by only two dates (excepting two wholly unreliable Gakushin dates), 3481±54 BP and 3604±70 BP (BM-707 and 706), which suggest a currency within the first quarter of the second millennium, while both of the dates for Rosinish, Benbecula and one for the Udal, North Uist, were obtained from marine shell and their calibration is therefore subject to a marine offset (ibid.: Appendix 6).

In terms of comparanda for the Sligeachan assemblage, as stated above the closest parallel is the Northton assemblage (especially, but not exclusively, the stratigraphically earlier 'Beaker I' material), which shares a predominance of incised decoration and provides exact parallels for each of the decorative motifs and schemes, including the herringbone-filled metopes. The only difference seems to be that Northton has no AOC Beaker, even though it does contain a few sherds with twisted cord-impressed decoration (Gibson 1982, 2006). All-Over-Cord Beaker is, however, known from Sorisdale (as mentioned above) and from Allt Chrisal, Barra, where some 45% of the sherd assemblage seems to belong to this type of Beaker; All Over Ornamented Beaker is also present there (Gibson 1995: fig. 4.37, 197–8, fig. 4.38, 214). The small assemblage from Calaraais, Lewis, includes sherds of AOC Beaker, as well as sherds with incised decoration and a few sherds with sub-rim cordons (Sheridan et al. forthcoming).

Other assemblages offering points of comparison with the Sligeachan material include Rosinish, where the assemblage published by Iain Crawford in 1977 seems, like the Northton assemblage, to be dominated by incised decoration, and to include the herringbone metope motif (Crawford 1977: fig. 5); the same motif has been found at Machair Mheadhanach in lochdair (see Chapter 10; Parker Pearson et al. 2004: fig. 17). The Beaker pottery found by Shepherd and Tuckwell in a midden at Rosinish also shares some features with the Sligeachan Beaker (e.g. in the use of incised lines and herringbone); it includes one pot with a sub-rim cordon and horizontal linear decoration, albeit executed using a comb rather than with impressed twisted cord, as was the case at Sligeachan (Shepherd 1976: fig. 11.3).

Food Vessel pottery (Early Bronze Age)

This tradition is represented by a few large, thick-walled vessels (Figure 11.12), some decorated, some plain, and was found in Trenches A and F in mound 18, and Trench K in mound 17. A single sherd from a large, thick-walled cooking vessel found in Trench D (mound 176) may well belong to this tradition as well, as may the pottery from Trench E (mound 17) discussed below.

The single vessel from Trench A (Figure 11.12.44) is represented by 17 sherds from context 12, the thick layer of light grey-brown sand overlaying the main Beaker-producing layers. It had been a large cooking jar, with an estimated rim diameter around 260mm and with a wall thickness ranging between 15mm and 18mm (widening to c.30mm across the rim). The rim is T-shaped, expanded externally and internally, with a gently sloping internal bevel and, below this, the gently concave neck swells out to a sinuous belly. The exterior is decorated with large, thick whipped-cord
Figure 11.12. The Food Vessel pottery from Trenches A, F, K, and E.
'maggot' impressions, which are roughly horizontal on the neck and include diagonal examples on the upper belly; they are up to 5mm wide and c.22mm long. The exterior is red-brown; the core, blackish, and the interior, black-grey, with a thin black encrustation extending up to the rim; the surfaces had been wiped smooth. Inclusions comprise platelets of mica, a little crushed quartz, and sub-angular and rounded fragments of a hard black stone, up to 4.5mm × 3.5mm in size and at a density of 7−10%.

Trench F produced sherds from at least one, and possibly up to three pots (Figure 11.12.45) that may be attributable to the domestic Food Vessel tradition, from contexts 33, 34, 35, 36 and 38 (with 36 representing a possible floor level). The most informative pot is represented by two conjoining blackish rimsherds (SF1007 from 36 and SF1008 from 33); some of the other sherds and spalls from Trench F may also belong. This pot had had an upright, internally-bevelled rim and neck, with an estimated rim diameter of c.250mm and a wall thickness of c.15mm. Its exterior is decorated with broad, fairly shallow incised lines, with a possible fringe of vertical lines immediately below the rim and roughly horizontal lines below that. Patches of black organic residue on the exterior suggest its use as a cooking jar. The surfaces had been fairly carefully smoothed, to a low sheen on the exterior and rim bevel. Inclusions are relatively sparse (3−5%) and comprise tiny mica platelets (probably present naturally in the clay) and sub-angular fragments of a hard, dull grey stone, up to 4mm × 4mm.

Three Food Vessel-tradition pots were found in the upper layers of Trench K, with most sherds (from one undecorated large coarseware jar) coming from contexts 144 and 145, the upper fills of pit 143. This jar−whose sherds include the largest piece of pottery (Figure 11.12.46) from the entire Sligeach assemblage, at 100mm × 85mm−had an upright, flattish-rounded rim and upright or slightly everted neck, broadening to what had probably been a globular belly; the estimated rim diameter is c.230mm and the wall thickness ranges between 15mm and 17.5mm. The exterior is light reddish-brown and, in places, dark grey to black; the core, mid-grey, and the interior, light red-brown; the presence of organic residue on the exterior indicates the pot's use for cooking. The surfaces had been fairly carefully smoothed. The fabric is hard and inclusions are sparse (at a density of c.3%); they comprise the same black shiny mineral and quartz as seen in the Beaker pottery and some fragments that may well be of feldspar. Around 10−15% of this pot is represented; the light degree of abrasion to the fracture surfaces suggests that they had not lain around for long before being incorporated within the pit fill.

One sherd (from among SF1054) had broken along a coil joint line. A second, somewhat smaller jar is represented by a neck or upper belly sherd decorated with impressions made by a square-ended tool (Figure 11.12.48, from context 141), along with sherd SF1059 and one sherd from SF1076, from the same context. This pot, like the others, had been used for cooking, having a thick, black organic encrustation on its exterior. The diameter, as suggested by the curvature of SF1071, is c.120mm, and the wall thickness, 11.5mm. The fabric is hard, with a hackly fracture, and inclusions are large (up to 8mm × 4mm) and abundant (c.15%), comprising angular fragments of a hard grey and grey-brown stone. The third pot is represented by a single coarseware sherd (SF1080, from 140) that does not obviously belong with the other two vessels.

The single sherd from Trench D (SF1035, from context 52 in the bottom half of the stratigraphic sequence) is comparable with the plain jar from Trench K in having come from a large, fairly thick-walled vessel; it may well be from the neck area and the pot's diameter at this point might have been as large as c.320mm. The exterior is reddish-brown; the core, light to dark grey; and the interior, dark grey. The presence of black encrustation on the exterior indicates its use as a cooking pot. The surfaces are uneven, with inclusions protruding; the latter are abundant (c.15%), large (up to c.8mm × 4mm), and mostly comprise angular fragments of a dark grey crystalline rock, with occasional fragments of crushed quartz.

The upper layers in Trench E (where a possible structure was found) produced 20 sherds and four fragments from three pots.

- The first is represented by an undecorated rimsherd with an internally-bevelled rim (Figure 11.12.49 from layer 57), and appears to have belonged to a large cooking pot; the estimated rim diameter is at least 240mm and the wall thickness, c.14mm. The fabric is hard and dark, with fairly abundant inclusions (7−10%) of angular grey stone, up to 8mm × 4mm (together with some quartz and the shiny black mineral as noted in some other Sligeach pots).

- A second large cooking jar is represented by three sherds (Figure 11.12.47) from topsoil, context 29; this has a flatish, upright, externally-bevelled rim and a straight neck, kinking out towards the belly. The estimated rim diameter is c.180mm and the wall thickness, c.14.5mm. A thick, black organic encrustation on the exterior obscures the decoration, which is scarcely visible to the naked eye and best observed using a microscope. It consists of thin, shallow scratched lines on the neck, mostly horizontal but with a hint of a more complex arrangement towards the bottom of the neck. The fabric is very hard and only slightly abraded; the exterior is black and the core and interior, blackish-red. Inclusions are not particularly large or abundant (c.7%); they comprise sand, plus angular fragments of a dark grey, slightly glossy mineral and crushed quartz.

- The third pot from Trench E (represented by SF1033 and SF1086 from 57, and possibly also SF1036 from 56 and SF1016 from 29) is thinner-walled and finer than the others, being around 9mm thick, and with carefully-smoothed surfaces. The sherds are undecorated and the presence of thin black encrustation on both the interior and exterior indicates that this, like the others, had been used for cooking. Inclusions are sparse (c.3%) and small (up to 3.5mm × 3.5mm), and comprise sub-angular fragments of a pink and black crystalline stone, plus a dull grey stone.
Even though the Trench E pottery differs from the Early Bronze Age pottery from the other trenches – in having scratched decoration on one pot, and in including a thin-walled, fine ware vessel – nevertheless, it is more likely to belong to the domestic Food Vessel tradition than to a later ceramic tradition. The shape of the rim and neck of the first pot is consistent with domestic Food Vessel pottery (e.g. at Kilellan, Islay; Cowie 2005: fig. 59; also cf. the decorated rimsherd from Trench F), and even though the finely incised decoration as seen on the second pot is known from Middle Iron Age Hebridean pottery (e.g. at Sollas; Campbell 1991: illus. 14), the vessel form is more characteristic of Early Bronze Age assemblages than of Iron Age examples.

The pottery from Trenches E, D and F is not associated with any radiocarbon dates, but elsewhere, in Trench K, one context containing this type of pottery has been radiocarbon-dated to the first half of the second millennium BC (context 144; 3490±40 BP; Ox-A-8926; 1930–1690 cal BC at 2σ), and it appears, from the other dates from this trench, that this post-Beaker phase of activity might have begun by the time that layer 159 was being deposited. In Trench A, a cattle bone from context 12 (in which the maggot-decorated Food Vessel jar was found) produced a date contemporary with the Beaker pottery from that trench, but the dated bone is likely to be residual.

As with the Sligeanach Beaker pottery, Hebridean *comparanda* for domestic Food Vessel pottery are fairly poorly dated. The best parallels are from Kilellan, Islay (Cowie 2005) where both decorated and undecorated large jars have been found, but unfortunately the midden in which they occurred has only one date, and that was obtained from mixed-species charcoal: 3590±60 BP (GU-3517; 2130–1770 cal BC at 2σ). The dating of the nearby Food Vessel settlement at Ardnav, Islay (Ritchie and Welfare 1983), is no better; see Sheridan (2004) for a discussion. In general, however, the 1930–1690 cal BC date for context 144 in Trench K is in line with the overall currency of Scottish Food Vessel pottery (Sheridan 2004).

Regarding *comparanda*, it should be noted that the Sligeanach domestic Food Vessel assemblage appears to represent just one element (or two, counting the thinner-walled vessel from Trench E) in the ceramic repertoire: at Kilellan, cups, bowls and vases were also present while bowls and vases were also present at Ardnav, and also at Dalmore, Lewis (Sharples 1983: T. and R. Cowie pers. comm.). The bowls and vases in these assemblages are comparable with those known from funerary contexts elsewhere, while some of the larger vessels recall Vase Urns. Domestic Food Vessel assemblages from mainland Scotland are very rare and no meaningful *comparanda* for the Sligeanach assemblage are known to the author. The assemblage is best understood as part of an insular Hebridean development, with the bowls and jars from other Hebridean Food Vessel assemblages reflecting the fact that the inhabitants participated in a network of contacts along the western seaways, sharing some design elements with other parts of Scotland and with northern Ireland.

Late Bronze Age/Early Iron Age

The pottery that can be ascribed to this period (Figure 11.13) was found on the inland mounds, in Trenches P (mound 24), T (mound 26) and V (mound 25). It consists of mostly featureless body sherds from large undecorated cooking pots; rims are mostly flatish and upright or minimally turned. Overall, a minimum of 10 pots is represented.

The 20 sherds are 12 fragments from Trench P (contexts 162, 164 and 191), from at least one cooking pot with a wall thickness of c.10mm and with sparse (<3%) lithic inclusions, are indeed featureless, the only characteristic of note being a 'false rim' ring joint on one sherd from SF1068. The Late Bronze Age/Early Iron Age date of this pottery is, however, indicated by the radiocarbon date of 2410±40 BP (OxA-8923; 760–390 cal BC at 2σ) from a cattle bone found in context 166, which appears to be contemporary with 191.

The Trench T pottery is similarly sparse, being represented by just nine sherds and 13 fragments from three to four pots, from contexts 220, 221, 224 and 226. The most informative sherd (Figure 11.13.54), from context 224, is a rimsherd, most of whose external surface has spalled off. The rim is flattened, minimally turned, and very slightly expanded towards the interior; the wall thickness is c.8.5mm, and the surviving surface is uneven. The sherd is too small to allow the rim diameter to be estimated. The thickest sherd from Trench T is from SF1714, from context 226 (14mm). This is from a large cooking pot with a hard fabric and a thick black encrustation on its interior.

Trench V provided the most informative and numerous sherds: around 100 sherds and 50 fragments, from six or seven large and mostly coarse cooking pots, were found in contexts 212, 213, 214 and 215 (including c.60 sherds and c.30 fragments from a single pot, SF1706, in 214). Most of the pieces are only slightly abraded.

- **Pot 1** (Figure 11.13.50), comprising conjoining rimsherd SF1735 from 214 and SF1093 from 215, had been a very large vessel, with an estimated rim diameter possibly as large as c.380mm and a wall thickness of c.4mm. The rim is upright, flat, and slightly expanded towards the interior on one of the sherds, and there is a distinct band of thin black encrustation on the rim top, extending a little way down the exterior, indicating its use for cooking. The sherds are medium brown throughout, slightly grey and reddish on the interior. The surfaces are uneven and the fabric is hard, with fairly numerous (c.10%) lithic inclusions comprising sand, golden mica platelets, biotite mica, quartz and angular fragments of a dull grey stone, up to 16mm × 9mm.

- **Pot 2** (Figure 11.13.53), represented by a single small rimsherd (SF1704 from 214), had been another large, flat-rimmed cooking pot, its rim diameter had been at least 230mm, and possibly considerably more, and the wall thickness is c.13mm. The exterior is black, with a thin organic encrustation; the outer half of the core is dark grey, and the inner core and interior are light
red. The surfaces are slightly uneven. Unlike Pot 1, this pot has a slightly soft, medium-abraded fabric, with sparse inclusions (c.3%) comprising sand, mica platelets and sub-angular fragments of grey stone.

- Pot 3 (Figure 11.13.52), represented by a single small rimsherd (SF1705 from 214), had also been a large pot but its rim diameter cannot be estimated; wall thickness is c.14mm. The rim is slightly pointed and upright or slightly inturned. The exterior is light brown with a black band of very thin encrustation below the rim; the core is dark grey, and the interior, light brown. The surfaces, though smoothed, have protruding lithic inclusions; the latter include fragments of dull grey stone up to 8mm × 5.5mm, and some sand.

- Pot 4 (Figure 11.13.51), represented by rimsherd SF1092 from 215, comes from a pot c.250mm in estimated rim diameter, with an upright, flattish rim and wall thickness c.17.5mm. The exterior is dark grey-brown with a thin patch of organic encrustation; the core, medium to dark grey, and the interior, light brown. The surfaces are slightly uneven. The fabric is hard, with sparse inclusions (3%) comprising some sand, sub-angular quartz up to 6mm × 4mm, a few tiny mica specks and fragments of dull grey rock.

The other pots from Trench V are represented only by featureless body sherds but are from the same kind of vessels, with wall thicknesses ranging from 10mm to 17mm (both from SF1706 from 214).

The dating for this pottery is provided by five radiocarbon dates from Trenches P, T and V, of which three are from contexts containing sherds (see Tables 11.1 and 11.8); together they suggest a date bracket between c.800 and 400 BC. Undecorated tub- or bucket-shaped pots are believed to have become the only kind of pottery in use in the Hebrides for around a millennium from c. 1500 BC (Campbell 2002: 140; Parker Pearson et al. 2004: 53), as shown, for example, by the large assemblage from Cladh Hallan, South Uist (ibid.) and by a virtually complete pot found under peat at Cleasro, Lewis (Anon. 1956: 459, fig. 2.3). Encrusted organic residue on the interior of the latter has been dated to 1400–1130 cal BC (OxA-11242; 3032±33 BP; Sheridan 2002: 155).
Middle Iron Age

Pottery that can definitely or probably be dated to the Middle Iron Age (Figure 11.13) was found in Trench U in mound 27 (associated with a probable wheelhouse) and Trenches W and X in mound 16. Once again, only a small amount of pottery was found (namely 41 sherds and three fragments from around four pots from Trench U, two sherds from one or two pots from Trench W, and 10 sherds from around six pots in Trench X). This pottery is significantly thinner and finer than the Late Bronze Age/Early Iron Age assemblage and is mostly of a hard, slightly sandy fabric.

The most diagnostic pottery comes from Trench U, where a decorated rim and neck sherd from a large globular pot with an everted rim (Figure 11.13.55; SF1708 from 206) can be paralleled closely among material from the Site B (Periods B1 and B2) wheelhouse at Sollas, North Uist (Campbell 1991: illus. 17). The Sligeanach sherd has incised decoration arranged as vertical lines immediately below the rim and an arcaded and fringed design on the neck; it is thin-walled (7mm) and the estimated rim diameter is c.200mm. It is of a hard, slightly gritty fabric; its outer surface has been very carefully smoothed and buffed to a very low sheen, while the interior shows signs of probably having been scraped to achieve its thinness. The presence of a thin black encrustation on a belly sherd confirms that this had been a cooking pot, and there is a small base sherd (Figure 11.13.58) which confirms that it had had a flat base. Also present in Trench U is a belly sherd from another pot that might have the remains of a detached cordon (Figure 11.13.57; SF1702 from 202); again, this feature can be paralleled among pottery of the same phase at Sollas. A third pot, represented among SF1098 from 204, has an upright, pointed rim with horizontal stab decoration below (not illustrated).

The only sherd of note from Trench W comes from the wall–base junction of a thin-walled (7.5mm), fine pot of hard, slightly sandy fabric resembling that seen in Trench U. The base is flat and the wall splays slightly (Figure 11.13.59); the sherd is too small to estimate base diameter, but the pot is likely to have been a large vessel comparable with the Middle Iron Age pots from Sollas.

Little can be said about the few sherds from Trench X, other than that they range in thickness from 6mm (among SF1719 from 242) to c.12mm (among SF1722 from 241) and are generally comparable in hardness and fabric with those from Trenches U and W. One, from among SF1719, has a corrugated exterior with a trace of organic material in one of the corrugations. If the latter does not represent subsequent rootlet growth, then this may be an example of the dung tempering as observed elsewhere in the Hebrides by Ewan Campbell (1991: 150) – although it should be emphasized that the possible organic impressions are only on the outside surface, and do not pervade the body of the sherd. In this respect the sherd is closer to Norse grass-marked pottery than to the Iron Age grass/dung-tempering as discussed by Campbell (ibid. and 2002: 140).

Some time depth among the Middle Iron Age pottery from Sligeanach is suggested by the radiocarbon dating evidence from Trench X and by the comparison for the Trench U vessels. The former suggests activity within the time bracket of the last one or two centuries BC and the first century AD (which, incidentally, is contemporary with Campbell’s period of Iron Age grass/dung-tempering at Sollas), whereas the latter suggests a second or third century AD date for the pottery, and the wheelhouse, in Trench U (Campbell 2002: 141).

Copper alloy awl

Niall Sharples and Alison Sheridan

A copper-alloy awl (SF1506; Figure 11.14) was recovered in an environmental sample from a ploughsoil (18) in Trench A, mound 18. The awl was broken at both ends but appears to be a double-pointed awl (Class ID; Thomas 2005: 221). Similar awls are well known from Early Bronze Age burial contexts in southern Britain and in Scotland (Annable and Simpson 1964; Clarke 1970) and, in Scotland, they are normally associated with Food Vessel burials. The Sligeanach example is unusual in coming from a settlement context and is also relatively small.

1506, A/18. A small copper-alloy point. It thickens in the centre but is broken at either end. The cross-section is noticeably rectangular to one side of the wrist but becomes circular on the other side. It is probably a double-pointed awl (Thomas 2005: 221, class 1D) but there remains a slight possibility that the rectangular side is a tang (Thomas 2005: 221, class 2C). The awl was analysed by Phil Parkes using a Camspec maxim 2040 Scanning Electron Microscope with Oxford Inca EDX analysis software. This revealed that the approximate composition of the alloy was 60% copper, 35% tin, 4% arsenic and 1% silver. Length 11.3mm, dia. 0.9mm.